MKLN1 splicing defect in dogs with lethal acrodermatitis
نویسندگان
چکیده
Lethal acrodermatitis (LAD) is a genodermatosis with monogenic autosomal recessive inheritance in Bull Terriers and Miniature Bull Terriers. The LAD phenotype is characterized by poor growth, immune deficiency, and skin lesions, especially at the paws. Utilizing a combination of genome wide association study and haplotype analysis, we mapped the LAD locus to a critical interval of ~1.11 Mb on chromosome 14. Whole genome sequencing of an LAD affected dog revealed a splice region variant in the MKLN1 gene that was not present in 191 control genomes (chr14:5,731,405T>G or MKLN1:c.400+3A>C). This variant showed perfect association in a larger combined Bull Terrier/Miniature Bull Terrier cohort of 46 cases and 294 controls. The variant was absent from 462 genetically diverse control dogs of 62 other dog breeds. RT-PCR analysis of skin RNA from an affected and a control dog demonstrated skipping of exon 4 in the MKLN1 transcripts of the LAD affected dog, which leads to a shift in the MKLN1 reading frame. MKLN1 encodes the widely expressed intracellular protein muskelin 1, for which diverse functions in cell adhesion, morphology, spreading, and intracellular transport processes are discussed. While the pathogenesis of LAD remains unclear, our data facilitate genetic testing of Bull Terriers and Miniature Bull Terriers to prevent the unintentional production of LAD affected dogs. This study may provide a starting point to further clarify the elusive physiological role of muskelin 1 in vivo.
منابع مشابه
Identification of a unique splice site variant in SLC39A4 in bovine hereditary zinc deficiency, lethal trait A46: An animal model of acrodermatitis enteropathica.
Lethal trait A46, also known as bovine hereditary zinc deficiency, Adema disease, and hereditary parakeratosis, is an autosomal recessive disorder first described in 1964, with a clinical presentation similar to that of acrodermatitis enteropathica (AE) in humans. The molecular basis of the defect has not been previously identified. Recently, the basic defect in AE was found to lie in SLC39A4. ...
متن کاملOf mice and men, metals and mutations.
Several mutations affecting the transport of copper and zinc in humans and in mice have been discovered over the last 15 years, joining the long known disturbance of copper transport in Wilson's disease. Menkes' disease (classical and mild variant forms) and X linked Ehlers-Danlos syndrome (type IX, X linked cutis laxa) have features in common with one another and with the brindled (Mobr) and b...
متن کاملComparison of Autogenic Costal Cartilage with Chitosan Scaffold in Canine Humeral Defect Healing
Objective- Current trends emphasize the acceleration of fracture healing on the ground that in doing so, the limitation of mobility and complications associated with recovery period are reduced. The present study aims to compare autogenic costal cartilage with Chitosan scaffold in canine humeral defect healing. Design- Experimental study Animal-15 adult male dogs Procedures-...
متن کاملCongenital Zinc Deficiency from Mutations of the SLC39A4 Gene as the Genetic Background of Acrodermatitis Enteropathica
Acrodermatitis enteropathica (AE) is an autosomal recessive disorder with the clinical triad of acral dermatitis, diarrhea and alopecia. AE is known to be caused by mutations of the SLC39A4 gene on the chromosome band 8q24.3, encoding the zinc transporter in human. An 8-month-old Korean boy presented with eczematous changes on the inguinal area and knees and was diagnosed with AE. Blood tests r...
متن کاملA defect in zinc uptake by jejunal biopsies in acrodermatitis enteropathica.
1. In a system in vitro, 65Zn accumulation by jejunal mucosal biopsies from patients with acrodermatitis enteropathica was found to be markedly reduced compared with controls. 2. We suggest that defective uptake of zinc by enterocytes is the primary abnormality responsible for the zinc deficiency underlying this disorder.
متن کامل